
Introduction to Computer Security

Discussion 4

Q1 IND-CPA (5 points)

When formalizing the notion of confidentiality, as provided by a proposed encryption scheme, we introduce the concept of indistinguishability under a chosen plaintext attack, or IND-CPA security. A scheme is considered *IND-CPA secure* if an attacker cannot gain any information about a message given its ciphertext. This definition can be defined as an experiment between a challenger and adversary, detailed in the diagram below:

Consider the one-time pad encryption scheme discussed in class. For parts (a) - (c), we will prove why one-time pad is not IND-CPA secure and, thus, why a key should not be reused for one-time pad encryption.

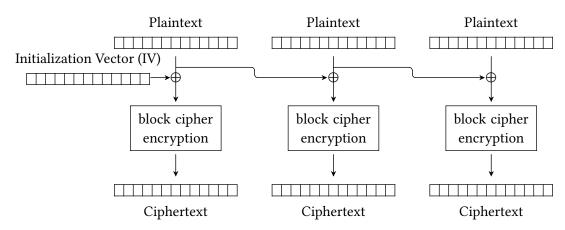
Q1.1 (1 point) What messages (M_0 and M_1) should the adversary provide the challenger?

Q1.2 (1 point) Now, for which message(s) should the adversary request an encryption from the challenger during the query phase?

(Ques	stion 1 continued)
Q1.3	(1 point) The challenger will now flip a random bit $b \in \{0,1\}$, encrypt M_b , and send back $C = \operatorname{Enc}(k,M_b) = M_b \oplus K$ to the adversary. How does the adversary determine b with probability $> \frac{1}{2}$?
Q1.4	(1 point) Putting it all together, explain how an adversary can always win the IND-CPA game with a probability 1 against a deterministic encryption algorithm. <i>Note: Given an identical plaintext, a deterministic encryption algorithm will produce identical ciphertext.</i>
Q1.5	(1 point) Assume that an adversary chooses an algorithm and runs the IND-CPA game a large number of times, winning with a probability of 0.6. Is the encryption scheme IND-CPA secure? Why or why not?
	O Secure O Insecure

Consider the Cipher Feedback (CFB) mode, whose encryption is given as follows:

$$C_i = \begin{cases} \text{IV, if } i = 0 \\ E_K(C_{i-1}) \oplus P_i, \text{ otherwise} \end{cases}$$


Q2.1	1 point) Draw the encryption diagram for CFB mode.
Q2.2	1 point) What is the decryption formula for CFB mode?
Q2.3	1 point) Select the true statements about CFB mode:
	☐ Encryption can be parallelized ☐ The scheme is IND-CPA secure
	☐ Decryption can be parallelized
Q2.4	1 point) What happens if two messages are encrypted with the same key and IV? What can the attacker learn about the two messages just by looking at their ciphertexts?
_	
Q2.5	1 point) If an attacker recovers the IV used for a given encryption, but not the key, will they be able to decrypt a ciphertext encrypted with the recovered IV and a secret key? Explain why or why no
	O Yes O No

Consider the following block cipher mode of operation.

 M_i is the i-th block of plaintext. C_i is the i-th block of ciphertext. E_K is AES encryption with key K.

$$C_0 = M_0 = IV$$

$$C_i = E_K(M_{i-1} \oplus M_i)$$

- Q3.1 (1 point) Which of the following is true about this scheme? Select all that apply.
 - ☐ The encryption algorithm is parallelizable
 - \square If one byte of a plaintext block M_i is changed, then the corresponding ciphertext block C_i will be different in exactly one byte.
 - \square If one byte of a plaintext block M_i is changed, then the next ciphertext block C_{i+1} will be different in exactly one byte
 - ☐ The encryption algorithm requires padding the plaintext
 - O None of the above
- Q3.2 (1 point) True or False: If the IV is always a block of all 0's for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.

True	O False

-		OR FALSE: If the IV is randomly generated for every encryption, this scheme is IND-tify your answer.
	O True	○ False

(Question 3 continued...)