CS161 Summer 2025

Introduction to Computer Security

Discussion 5

Q1 MAC Madness (18 points)

Evan wants to store a list of every CS161 student's firstname and lastname, but they are afraid that Mallory will tamper with their list.

Evan is considering adding a cryptographic value to each record to ensure its integrity. For each scheme, determine what Mallory can do without being detected.

Assume MAC is a secure MAC, H is a cryptographic hash, and Mallory does not know Evan's secret key k. Assume that firstname and lastname are all lowercase and **alphabetic** (no numbers or special characters), and concatenation does not add any delimiter (e.g. a space or tab), so nick||weaver = nickweaver.

Q1.1 (3 points) $H(firstname lastname)$
Mallory can modify a record to be a value of her choosing
O Mallory can modify a record to be a specific value (not necessarily of her choosing)
O Mallory cannot modify a record without being detected
Q1.2 (3 points) $MAC(k, firstname lastname)$
Hint: Can you think of two different records that would have the same MAC?
O Mallory can modify a record to be a value of her choosing
O Mallory can modify a record to be a specific value (not necessarily of her choosing)
O Mallory cannot modify a record without being detected
Q1.3 (3 points) $MAC(k, firstname "-" lastname)$, where "-" is a hyphen character
O Mallory can modify a record to be a value of her choosing
O Mallory can modify a record to be a specific value (not necessarily of her choosing)
O Mallory cannot modify a record without being detected
Q1.4 (3 points) $MAC(k, H(firstname) H(lastname))$
O Mallory can modify a record to be a value of her choosing
O Mallory can modify a record to be a specific value (not necessarily of her choosing)
Mallory cannot modify a record without being detected

(Question 1 continued)					
Q1.5 (3 points) $MAC(k, firstname) MAC(k, lastname)$					
Mallory can modify a record to be a value of her choosing					
O Mallory can modify a record to be a specific value (not necessarily of her choosing)					
O Mallory cannot modify a record without being detected					
Q1.6 (3 points) Which of Evan's schemes guarantee confidentiality on his records?					
O All 5 schemes	Only the schemes with a hash				
Only the schemes with a MAC	O None of the above				

Q2	Confide	entiality a	ınd Integr	ity	(4 points)
• Sy • Cr	e and Bob warmetric En Encryption: Decryption: Typtographic AC: MAC(I	acryption: Enc (K, m) Dec (K, m) Chash Fun))		entiality and integrity. They have:
The	y share a sy	mmetric ke	y <i>K</i> and kn	ow each ot	her's public key.
	assume thes safely use th	ne same key	for encryp	tion and M	fere with each other when used in combination; <i>i.e.</i> , we IAC.
		1. c = 2. c = 3. c =	$=c_1,c_2: \mathrm{wh}$	$(\mathcal{K},m))$ here $c_1=\mathbf{E}$ here $c_1=\mathbf{E}$	$\begin{aligned} &\operatorname{Enc}(K,m) \text{ and } c_2 = \operatorname{Hash}(c_1) \\ &\operatorname{Enc}(K,m) \text{ and } c_2 = \operatorname{MAC}(K,m) \\ &\operatorname{Enc}(K,m) \text{ and } c_2 = \operatorname{MAC}(K,c_1) \end{aligned}$
Q2.1	(1 point) Ir	n which sch	emes can B	ob success:	fully decrypt m given c ?
	<u> </u>	<u> </u>	☐ 3	4	
Q2.2	(1 point) C	onsider an	eavesdropp	er Eve, wh	o can see the communication between Alice and Bob.
	Out of all c	of the schem	ies decrypta	ble in 2.1, v	which schemes also provide <i>confidentiality</i> against Eve?
	<u> </u>	\square 2	☐ 3	\square 4	
Q2.3	` • /	onsider a m lice and Bo		niddle Mall	ory, who can eavesdrop and modify the communication
			nes decrypta y tampering		which schemes also provide <i>integrity</i> against Mallory? message?
	<u> </u>	<u> </u>	☐ 3	\square 4	
Q2.4	(1 point) M	lany of the	schemes ab	ove are ins	secure against a <i>replay attack</i> .
	message th	nat Alice ser	nt to Bob son	ne time lat	many messages, and Mallory remembers an encrypted er, Mallory can send the exact same encrypted message the message <i>again</i> .

For each scheme that has **both** confidentiality against Eve (2.2) *and* integrity against Mallory (2.3), how can the scheme be modified to prevent a replay attack?

Recall that in a Diffie-Hellman key exchange, there are values a,b,g, and p. Alice computes $g^a \mod p$ and Bob computes $g^b \mod p$.

Q3.1 (1 point) Which of these values (a,b,g, and p) are publicly known and which must be kept private?

a	b	g	p
O Public	O Public	O Public	O Public
O Private	O Private	O Private	O Private

Q3.2 (1 point) Mallory can eavesdrop, intercept, and modify everything sent between Alice and Bob.
Alice and Bob perform Diffie-Hellman to agree on a shared symmetric key K . After the exchange,
Bob gets the feeling that something went wrong and calls Alice. He compares his value of K to
Alice's and realizes that they are different. Explain what Mallory has done.

Q3.3 (1 point) Assume that K, the Diffie-Hellman exponents a and b, and the messages themselves are destroyed once all messages are sent. That is, these values are not stored on Alice and Bob's devices after they are done communicating.

Eavesdropper Eve records all communications between Alice and Bob, but is unable to decrypt them. At some point in the future, Eve is lucky and manages to compromise Bob's computer.

Is the confidentiality of Alice and Bob's prior **Diffie-Hellman**-based communication in jeopardy? Explain why.

O Yes	O No			

Discussion 5 Page 4 of 4 CS161 — Summer 2025