
CS161 Introduction to
Computer Security Exam Prep 4Summer 2025

Q1 EvanBlock Cipher (24 points)

EvanBot invents a new block cipher chaining mode called the EBC (EvanBlock Cipher). The encryption
diagram is shown below:

𝑃1

⊕

AES Encryption

𝐶1

K

⊕

𝑃2

⊕

AES Encryption

𝐶2

K

⊕

𝑃3

⊕

AES Encryption

𝐶3

K

IV

Q1.1 (2 points) Write the encryption formula for 𝐶𝑖, where 𝑖 > 1. You can use 𝐸𝐾 and 𝐷𝐾 to denote
AES encryption and decryption respectively.

𝐶𝑖 =𝐸𝐾(𝑃𝑖 ⊕ 𝑃𝑖−1 ⊕𝐶𝑖−1)

Solution: For reference, 𝐶𝑖 = 𝐸𝐾(𝑃1 ⊕ IV)

Q1.2 (2 points) Write the decryption formula for 𝑃𝑖, where 𝑖 > 1. You can use 𝐸𝐾 and 𝐷𝐾 to denote AES
encryption and decryption respectively.

𝑃𝑖 =𝐷𝐾(𝐶𝑖) ⊕ 𝑃𝑖−1 ⊕𝐶𝑖−1

Solution: For reference, 𝑃𝑖 = 𝐷𝐾(𝐶𝑖) ⊕ 𝑃𝑖−1 ⊕𝐶𝑖−1

Page 1 of 6

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.3 (4 points) Select all true statements about this scheme.

It is IND-CPA secure if we use a random IV for every encryption.

It is IND-CPA secure if we use a hard-coded, constant IV for every encryption.

Encryption can be parallelized.

Decryption can be parallelized.

None of the above

Solution: This scheme actually exists in real life; it’s called AES-PCBC, where PCBC stands for
Propagating Cipher Block Chaining Mode. (The CBC here is the same as the CBC in AES-CBC.)

AES-PCBC is IND-CPA secure with random IVs. Intuitively, notice that AES-PCBC looks quite
similar to AES-CBC, except we are sending both the ciphertext and plaintext into the next block
cipher encryption, instead of just the ciphertext.

If we use the same IV for every encryption, AES-PCBC is deterministic, so it’s not IND-CPA
secure.

Encryption cannot be parallelized because you have to wait for the current block’s ciphertext to
be computed (which requires the current block cipher encryption to run) before you can pass
the current block’s ciphertext into the next block cipher encryption.

Decryption cannot be parallelized because you have to wait for the current block’s plaintext to
be computed (which requires the current block cipher decryption to run) before you can pass the
current block’s plaintext into the XOR that computes the next block’s plaintext.

Q1.4 (4 points) Alice has a 4-block message (𝑃1, 𝑃2, 𝑃3, 𝑃4). She encrypts the message with the scheme
and obtains the ciphertext 𝐶 = (𝐼𝑉,𝐶1, 𝐶2, 𝐶3, 𝐶4)

Mallory tampers with this ciphertext by changing the 𝐼𝑉 to 0. Bob receives the modified ciphertext
𝐶′ = (0,𝐶1, 𝐶2, 𝐶3, 𝐶4).

What message will Bob compute when he decrypts the modified ciphertext 𝐶′?

𝑋 represents some unpredictable “garbage” output of the AES block cipher.

(𝑃1, 𝑃2, 𝑃3, 𝑃4)

(𝑋, 𝑃2, 𝑋, 𝑃4)

(𝑋,𝑋, 𝑃3, 𝑃4)

(𝑋, 𝑃2, 𝑃3, 𝑃4)

(𝑋,𝑋,𝑋,𝑋)

None of the above

Solution: Modifying any ciphertext block in AES-PCBC will cause itself and all future plaintext
blocks to become garbage (hence the “propagate”).

Alice has a 3-block message (𝑃1, 𝑃2, 𝑃3). She encrypts this message with the scheme and obtains the
ciphertext 𝐶 = (𝐼𝑉,𝐶1, 𝐶2, 𝐶3).

Mallory tampers with this ciphertext by swapping two blocks of ciphertext. Bob receives the modified
ciphertext 𝐶′ = (𝐼𝑉,𝐶2, 𝐶1, 𝐶3).

Exam Prep 4 (Question 1 continues…) Page 2 of 6 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

When bob decrypts the modified ciphertext 𝐶′, he obtains some modified plaintext 𝑃 ′ = (𝑃 ′
1 , 𝑃 ′

2 , 𝑃 ′
3).

In the next three subparts, write expressions for 𝑃 ′
1 , 𝑃 ′

2 , and 𝑃 ′
3 .

Q1.5 (4 points) 𝑃 ′
1 is equal to these values, XORed together. Select as many options as you need.

For example, if you think 𝑃 ′
1 = 𝑃1 ⊕𝐶2, then bubble in 𝑃1 and 𝐶2.

𝑃1 𝑃2 𝑃3 𝐼𝑉 𝐶1 𝐶2 𝐶3

Solution: We denote the “original” ciphertext blocks by 𝐶𝑖 and the modified ciphertext blocks
by 𝐶′

𝑖 . For example, 𝐶′
1 = 𝐶2 in our given scheme. This is likewise the case for plaintext blocks.

We have 𝐶1 = 𝐸𝐾(𝑃1 ⊕ 𝐼𝑉) and 𝐶2 = 𝐸𝐾(𝑃2 ⊕𝐶1 ⊕ 𝑃1) from the encryption/decryption for-
mulas.

After swapping, when we decrypt 𝑃1, we plug in 𝐶2’s value for 𝐶′
1 :

𝑃 ′
1 = 𝐷𝐾(𝐶′

1) ⊕ 𝐼𝑉
𝑃 ′
1 = 𝐷𝐾(𝐶2) ⊕ 𝐼𝑉
𝑃 ′
1 = 𝐷𝐾(𝐸𝐾(𝑃2 ⊕𝐶1 ⊕ 𝑃1)) ⊕ 𝐼𝑉
𝑃 ′
1 = 𝑃2 ⊕𝐶1 ⊕ 𝑃1 ⊕ 𝐼𝑉

Q1.6 (4 points) 𝑃 ′
2 is equal to these values, XORed together. Select as many options as you need.

𝑃1 𝑃2 𝑃3 𝐼𝑉 𝐶1 𝐶2 𝐶3

Solution: We have 𝐶1 = 𝐸𝐾(𝑃1 ⊕ 𝐼𝑉) and 𝐶2 = 𝐸𝐾(𝑃2 ⊕𝐶1 ⊕ 𝑃1).

We know from the previous subpart that 𝑃 ′
1 = 𝑃2 ⊕𝐶1 ⊕ 𝑃1 𝐼𝑉. Key to this problem is that the

decryption formulas will use the “new” values of 𝑃 ′, 𝐶′ for all values since that’s what Bob
receives/decrypts.

After swapping, when we decrypt 𝑃2, we plug in 𝐶1’s value:

𝑃 ′
2 = 𝐷𝐾(𝐶′

2) ⊕ 𝑃 ′
1 ⊕𝐶′

1

𝑃 ′
2 = 𝐷𝐾(𝐶1) ⊕ 𝑃 ′

1 ⊕𝐶′
1

𝑃 ′
2 = 𝐷𝐾(𝐸𝐾(𝑃1 ⊕ 𝐼𝑉)) ⊕ 𝑃 ′

1 ⊕𝐶′
1

𝑃 ′
2 = (𝑃1 ⊕ 𝐼𝑉) ⊕ 𝑃 ′

1 ⊕𝐶′
1

𝑃 ′
2 = (𝑃1 ⊕ 𝐼𝑉) ⊕ (𝑃2 ⊕𝐶1 ⊕ 𝑃1 ⊕ 𝐼𝑉) ⊕ 𝐶2
𝑃 ′
2 = 𝑃2 ⊕𝐶1 ⊕𝐶2

Exam Prep 4 (Question 1 continues…) Page 3 of 6 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.7 (4 points) 𝑃 ′
3 is equal to these values, XORed together. Select as many options as you need.

𝑃1 𝑃2 𝑃3 𝐼𝑉 𝐶1 𝐶2 𝐶3

Solution: We know 𝑃 ′
2 = 𝑃2 ⊕𝐶1 ⊕𝐶2 from the previous subpart and 𝐶3 = 𝐸𝐾(𝑃3 ⊕ 𝑃2 ⊕𝐶2)

Plug in decryption formula for 𝑃3:

𝑃 ′
3 = 𝐷𝐾(𝐶′

3) ⊕ 𝑃 ′
2 ⊕𝐶′

2

𝑃 ′
3 = 𝐷𝐾(𝐶3) ⊕ 𝑃 ′

2 ⊕𝐶′
2

𝑃 ′
3 = 𝐷𝐾(𝐸𝐾(𝑃3 ⊕ 𝑃2 ⊕𝐶2)) ⊕ 𝑃 ′

2 ⊕𝐶′
2

𝑃 ′
3 = (𝑃3 ⊕ 𝑃2 ⊕𝐶2) ⊕ (𝑃2 ⊕𝐶1 ⊕𝐶2) ⊕ 𝐶1
𝑃 ′
3 = 𝑃3

This turns out to be an unintended side effect of PCBC (and not a very good one).

Exam Prep 4 Page 4 of 6 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q2 Cryptography: All or Nothing Security (20 points)

EvanBot decides to modify AES-CTR in order to provide all-or-nothing security. All-or-nothing
security means that modifying any part of the ciphertext will make the entire plaintext decrypt to some
sort of “garbage” output.

EvanBot designs the following scheme to encrypt 𝑀 = (𝑀1,𝑀2,…,𝑀𝑛):
1. EvanBot generates a new random key 𝐾2 on top of the original key 𝐾1. Note that 𝐾2 is not known

to the decryptor, even though 𝐾1 is.
2. EvanBot transforms 𝑀 into “pseudo-message” 𝑀 ′ by setting 𝑀 ′

𝑖 = 𝑀𝑖 ⊕𝐸𝐾2
(𝑖).

3. EvanBot adds the block 𝑀 ′
𝑛+1 = 𝐻(𝑀 ′

𝑛+1 ⊕ 1) ⊕𝐻(𝑀 ′
2 ⊕ 2) ⊕…⊕𝐻(𝑀 ′

𝑛 ⊕ 𝑛) ⊕𝐾2
4. EvanBot derives the ciphertext 𝐶 = 𝖤𝗇𝖼(𝐾1,𝑀 ′) using AES-CTR with key 𝐾1 and IV 𝐼𝑉.

First, we will walk through the decryption process for this all-or-nothing scheme. Fill in the blanks for
the following by answering the multiple-choice subparts below:

1. CodaBot receives 𝐶 .

2. CodaBot decrypts 𝐶 with key 𝐾1 to recover
Q2.1

.

3. CodaBot sets 𝐾2 = 𝑀 ′
𝑛+1 ⊕

Q2.2
.

4. CodaBot finds i-th original message block as 𝑀𝑖 =
Q2.3

.

Q2.1 (2 points) Select the correct option for the blank on Step 2:

𝐾2

𝐻(𝑀 ′
1 ⊕ 1) ⊕…⊕𝐻(𝑀 ′

𝑛 ⊕ 𝑛)

𝑀 ′
𝑖 ⊕𝐸𝐾2

(𝑖)

𝑀 ′

Solution: We first need to decrypt the ciphertext 𝐶 , which decrypts to 𝑀 ′ (the pseudo-message)
as stated in Step 4 of the encryption process.

Q2.2 (2 points) Select the correct option for the blank on Step 3:

𝐾2

𝐻(𝑀 ′
1 ⊕ 1) ⊕…⊕𝐻(𝑀 ′

𝑛 ⊕ 𝑛)

𝑀 ′
𝑖 ⊕𝐸𝐾2

(𝑖)

𝑀 ′

Solution: We now need to recover 𝐾2 in order to decrypt the pseudo-message into the real
message. By re-arranging the formula from Step 3 of the encryption process, we find that 𝐾2 =
𝑀 ′

𝑛+1 ⊕𝐻(𝑀 ′
1 ⊕ 1) ⊕…𝐻(𝑀 ′

𝑛 ⊕ 𝑛).

Q2.3 (2 points) Select the correct option for the blank on Step 4:

𝐾2

𝐻(𝑀 ′
1 ⊕ 1) ⊕…⊕𝐻(𝑀 ′

𝑛 ⊕ 𝑛)

𝑀 ′
𝑖 ⊕𝐸𝐾2

(𝑖)

𝑀 ′

Solution: We can now recover the real message by XOR-ing out 𝐸𝐾2
(𝑖) with the 𝑖-th block per

Step 2 of the encryption process.

Exam Prep 4 (Question 2 continues…) Page 5 of 6 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.4 (5 points) Explain how modifying an arbitrary ciphertext block prevents recovery of any block of
the original message.

HINT: Show that we cannot recover 𝐾2 if any ciphertext block is modified.

Solution: Say we modify some 𝐶𝑖 to 𝐶′
𝑖 . We then decrypt 𝑀 ′

𝑖 (the 𝑖-th pseudo-message block)
to some gargabe 𝑀∗𝑖

𝑖 .

Recall that we recover 𝐾2 by XOR-ing the hashes of all 𝑀 ′
𝑖 with the last ciphertext block.

Therefore, since one of the inputs to these hashes is wrong, the entire XOR will be irrecoverably
incorrect, since a small change in a hash input will lead to a wildly different output (avalanche
effect). This is important to note, because otherwise an attacker could predictably modify the
ciphertexts to cancel out their differences and recover the same 𝐾2 (see next subpart).

Q2.5 (5 points) EvanBot wonders if it’s really necessary to have the hash function used in Step 3, and
decides to replace Step 3 with this new step:

3. EvanBot adds the block 𝑀 ′
1 ⊕ 1) ⊕ (𝑀 ′

2 ⊕ 2) ⊕…⊕ (𝑀 ′
𝑛 ⊕ 𝑛) ⊕𝐾2 to the end of 𝑀 ′.

Show that it is possible to tamper with the order of the message blocks, i.e. by swapping two blocks.
Note that “tamper” means the message will be decrypted to something different, but not all blocks
will turn to garbage (i.e. not “all or nothing”).

Solution: Say we swap 𝑀 ′
1 and 𝑀 ′

2. When decrypting, the client will then successfully compute
𝐾2 with the expression above.

Since we are using AES-CTR, we decrypt 𝑀1 = 𝐸𝐾(𝐼𝑉 + 1) ⊕ 𝐶2 and 𝑀2 = 𝐸𝐾(𝐼𝑉 + 2) ⊕ 𝐶1.
Note that the 𝐶1, 𝐶2 in the decryption equations are swapped since we swapped the ciphertext.
We then see that (since XOR is commutative):

((𝐸𝐾(𝐼𝑉 + 1) ⊕ 𝐶2) ⊕ 1) ⊕ ((𝐸𝐾(𝐼𝑉 + 2) ⊕ 𝐶1) ⊕ 𝐶2)…
= ((𝐸𝐾(𝐼𝑉 + 1) ⊕ 𝐶1) ⊕ 1) ⊕ ((𝐸𝐾(𝐼𝑉 + 2) ⊕ 𝐶2) ⊕ 2)…
= (𝑀 ′

1 ⊕ 1) ⊕ (𝑀 ′
2 ⊕ 2)…

This does not hold with the hash version, since the inputs to the hash changing even a little bit
change the output dramatically (i.e. the XOR does not commute through the hash function).

Q2.6 (4 points) Does the original all-or-nothing scheme (from the beginning of the question) provide
integrity?

Yes No

Explain why or why not.

Solution: This scheme does not provide integrity, since we cannot detect tampering. The all-
or-nothing property just causes them to decrypt garbage, but this is not sufficient to provide
integrity. For example, tampering with a normal AES ciphertext (without MAC) also causes them
to decrypt a (at least partially) garbage message, but does not provide integrity.

Exam Prep 4 Page 6 of 6 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

	EvanBlock Cipher
	Cryptography: All or Nothing Security

