
CS161 Introduction to
Computer Security Exam Prep 5Summer 2025

Q1 The Red Hood (15 points)

Jason Todd decides to launch a communications channel in order to securely communicate with the
Red Hood Gang over an insecure channel. Jason wants to test different schemes in his attempt to attain
confidentiality and integrity.

Notation:
• 𝑀 is the message Jason sends to the recipient.
• 𝐾1,𝐾2, and 𝐾3 are secret keys known only to Jason and the recipient
• 𝖤𝖢𝖡, 𝖢𝖡𝖢, and 𝖢𝖳𝖱 represent block cipher encryption modes for a secure block cipher.
• Assume that 𝖢𝖡𝖢 and 𝖢𝖳𝖱 mode are called with randomly generated IVs.
• 𝖧 is SHA2, a collision-resistant, one-way hash function.
• 𝖧𝖬𝖠𝖢 is the HMAC construction from lecture.

Decide whether each scheme below provides confidentiality, integrity, both, or neither. For all question
parts, the ciphertext is the value of 𝐶 ; 𝑡 is a temporary value that is not sent as part of the ciphertext.

Q1.1 (3 points) Consider the following scheme:

𝑡 = 𝖢𝖡𝖢(𝐾1,𝑀) 𝐶1 = 𝖤𝖢𝖡(𝐾2, 𝑡) 𝐶2 = 𝖧𝖬𝖠𝖢(𝐾3, 𝑡) 𝐶 = (𝐶1, 𝐶2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: This is a typical encrypt-then-MAC scheme with a twist: Instead of including the
ciphertext 𝑡 directly, the ciphertext (but not the MAC) is additionally encrypted with ECB mode.
Even though both the HMAC and ECB leak information about 𝑡, 𝑡 doesn’t leak information about
the plaintext, so the scheme is confidential. The HMAC over 𝑡 ensures that the input passed to
CBC decryption can’t be tampered with, so the scheme maintains integrity.

Page 1 of 12

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.2 (3 points) Consider the following scheme:

𝑡 = 𝖤𝖢𝖡(𝐾1,𝑀) 𝐶1 = 𝖢𝖡𝖢(𝐾2, 𝑡) 𝐶2 = 𝖧𝖬𝖠𝖢(𝐾3, 𝑡) 𝐶 = (𝐶1, 𝐶2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that 𝑡 leaks information about the message because it uses insecure ECB mode.
𝐶2 then leaks information about 𝑡, which leaks information about the plaintext, so confidentiality
is lost (in this case, 𝐶2 is deterministic). However, because the HMAC is computed over 𝑡, which
is decryptable to the message, integrity is maintained.

Q1.3 (3 points) Consider the following scheme:

𝐶1 = 𝖤𝖢𝖡(𝐾1,𝑀) 𝐶2 = 𝖧(𝐾2‖𝐶1) 𝐶 = (𝐶1, 𝐶2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: 𝐶1 leaks information about 𝑀 it uses insecure ECB mode, so confidentiality is lost.
𝐶2 does not maintain integrity as it vulnerable to length extension attacks—an attacker could
forge 𝐶2′ = 𝐻(𝐾2 ‖ 𝐶1 ‖ 𝑥) and 𝐶1′ = 𝐶1 ‖ 𝑥, which would be accepted by anyone verifying
the hash.

Exam Prep 5 (Question 1 continues…) Page 2 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.4 (3 points) For this subpart only, assume that 𝑖 a monotonically, increasing counter incremented per
message.

𝐶1 = 𝖢𝖳𝖱(𝐾1,𝑀) 𝐶2 = 𝖧𝖬𝖠𝖢(𝑖,𝐻(𝐶1)) 𝐶 = (𝐶1, 𝐶2)

Clarification issued during exam: Assume that the counter, i, starts at 0.

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Because 𝑖 is a known value, the key to the HMAC can be predicted, and the scheme
does not maintain integrity. However, since the ciphertext is encrypted with secure CTR mode,
and the insecure HMAC is computed only over the ciphertext, the scheme maintains confiden-
tiality.

Q1.5 (3 points) For this subpart only, assume that the block size of block cipher is 𝑛, the lengths of 𝐾1
and 𝐾2 are 𝑛, the length of 𝑀 must be 2𝑛, and the length of the hash produced by 𝐻 is 2𝑛.

𝐶1 = 𝖢𝖡𝖢(𝐾1,𝐾2) 𝐶2 = 𝑀 ⊕𝐶1 ⊕𝖧(𝐶1) 𝐶 = (𝐶1, 𝐶2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that the attacker already knows the value of 𝐶1 since it is sent with the
ciphertext. Because of this, the adversary can just compute 𝐻(𝐶1) then 𝐶2 ⊕𝐶1 ⊕𝐻(𝐶1) in
order to recover 𝑀 , so the scheme is not confidential. Additionally, there is no MAC, so the
scheme does not have integrity.

Exam Prep 5 Page 3 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q2 Integrity and Authenticity: Mix-and-MAC (22 points)

Alice designs a scheme that generates a single MAC on a list of 𝑛 messages 𝑀1,𝑀2,…,𝑀𝑛.

𝑀1 𝑀2 𝑀3

HMAC HMAC HMACK K K

𝑡1 𝑡2 𝑡𝑛

…

…

⨁

T

1. Compute HMACs on each individual message 𝑡𝑖 = 𝖧𝖬𝖠𝖢(𝐾,𝑀𝑖), for 1 ≤ 𝑖 ≤ 𝑛.
2. XOR all the HMAC outputs (𝑡𝑖) together to get the final MAC output. 𝑇 = 𝑡1 ⊕ 𝑡2 ⊕…⊕ 𝑡𝑛.

Q2.1 (2 points) Does this scheme require the message length to be less than or equal to the length of the
HMAC output?

Yes, because HMAC processes messages one block at a time.

Yes, because XOR cannot be done between two different-length bitstrings.

No, because HMAC pads shorter messages to the block length.

No, because HMAC takes in arbitrary-length inputs and outputs fixed-length outputs.

Solution: By definition, HMAC can take in arbitrary-length inputs.

Option (C) is false. HMAC does not pad shorter messages.

Q2.2 (2 points) Alice computes the MAC for the message list [𝑀1,…,𝑀𝑛]. She sends the message list
and the MAC to Bob.

Bob adds a new message 𝑀𝑛+1 to the list, and wants to compute the MAC of the new message list
[𝑀1,…,𝑀𝑛,𝑀𝑛+1].

What is the minimum number of HMACs that Bob needs to compute in order to compute the MAC
of the new message list?

0 1 2 n/2 n n+1

Solution: Bob computes 𝑡𝑛+1, which only takes one HMAC to compute. Then Bob can compute
𝑇 ⊕ 𝑡𝑛+1 to get the MAC of the new list.

Exam Prep 5 (Question 2 continues…) Page 4 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.3 (4 points) Alice computes the MAC for two message lists:

• The list 𝐴 = [𝐴1, 𝐴2,…,𝐴𝑛] has MAC 𝑇𝐴.
• The list 𝐵 = [𝐵1, 𝐵2,…,𝐵𝑛] has MAC 𝑇𝐵.

Mallory observes both message lists and both MACs. Mallory does not know 𝐾 .

Mallory wants to compute a valid MAC on some message list that is not 𝐴 or 𝐵.

Give a valid (message list, MAC) pair that Mallory could compute.

The message list is:

Solution: [𝐴1, 𝐴2,…,𝐴𝑛, 𝐵1, 𝐵2,…,𝐵𝑛]

This message list contains all the messages in 𝐴 and 𝐵.

The MAC on the above message list is:

Solution: 𝑇𝐴 ⊕ 𝑇𝐵
This tag can be computed without knowing 𝐾 . Solutions that try to use 𝐾 in their expression
for the tag would be incorrect, because Mallory does not know 𝐾 .

The MAC of the combined list of messages is:

𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛) ⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵1)… ⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵𝑛)

But we know that

𝑇𝐴 = 𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛)

𝑇𝐵 = 𝖧𝖬𝖠𝖢(𝐾,𝐵1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵𝑛)

So we can simplify the MAC expression to 𝑇𝐴 ⊕ 𝑇𝐵.

Note: Answers where the MAC is an expression in terms of 𝐾 were graded as incorrect, because
Mallory does not know 𝐾 (and would not be able to compute such a MAC).

Exam Prep 5 (Question 2 continues…) Page 5 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.4 (4 points) Mallory does not know 𝐾 . Mallory wants to compute a valid MAC on [pancake], which
is a list containing only one message (namely “pancake”).

Mallory is allowed to ask for the MAC of two message lists that are not the list [pancake], and Alice
will provide the correct MACs for each of the message lists.

The first message list that Mallory queries for is:

Solution: Many alternative solutions exist for this subpart, but most should follow a similar idea
to the following.

[pancake, waffle]

“waffle” can be replaced with any arbitrary message in this solution.

Alice reports that the MAC of the message list in the box above is 𝑇1.

The second message list that Mallory queries for is:

Solution: [waffle]

Alice reports that the MAC of the message list in the box above is 𝑇2.

Now, Mallory can compute that the MAC of the message list [pancake] is:

Solution: 𝑇1 ⊕ 𝑇2
𝑇1 = 𝖧𝖬𝖠𝖢(𝐾, pancake) ⊕ 𝖧𝖬𝖠𝖢(𝐾,waffle)

𝑇2 = 𝖧𝖬𝖠𝖢(𝐾,waffle)

If we XOR these two tags together, then the 𝖧𝖬𝖠𝖢(𝐾,waffle) cancels, leaving us with just
𝖧𝖬𝖠𝖢(𝐾, pancake), as desired.

Exam Prep 5 (Question 2 continues…) Page 6 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

In the next two subparts, Alice modifies her scheme by adding an extra hashing step at the end:

𝑀1 𝑀2 𝑀3

HMAC HMAC HMACK K K

𝑡1 𝑡2 𝑡𝑛

…

…

⨁
H

T

1. Compute HMACs on each individual message. 𝑡𝑖 = 𝖧𝖬𝖠𝖢(𝐾,𝑀𝑖), for 1 = 𝑖 = 𝑛.
2. XOR all the HMAC outputs (𝑡𝑖) together, and hash the result, to get the final MAC output. 𝑇 =
𝖧(𝑡1 ⊕ 𝑡2 ⊕…⊕ 𝑡𝑛).

Q2.5 (2 points) Using this new scheme, Alice computes the MAC for the message list [𝑀1,…,𝑀𝑛]. She
sends the message list and the MAC to Bob.

Bob adds a new message 𝑀𝑛+1] to the list, and wants to compute the MAC of the new message list
[𝑀1,…,𝑀𝑛,𝑀𝑛+1].

What is the minimum number of HMACs that Bob needs to compute in order to compute the MAC
of the new message list?

0 1 2 n/2 n n+1

Solution: Given 𝑇 , the output of a hash, there is no way for Bob to learn what the input to
the hash was (the XOR of the 𝑡1,…, 𝑡𝑛). Therefore, Bob would have to recompute 𝑡1,…, 𝑡𝑛 from
scratch, and also compute the new 𝑡𝑛+1, for a total of 𝑛 + 1 HMAC computations.

Exam Prep 5 (Question 2 continues…) Page 7 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.6 (2 points) Does the attack in the third subpart still work with this new scheme?

Yes, with no modifications.

Yes, if we apply 𝖧 to the MAC produced by the attack.

No, because Mallory cannot compute the hash without knowing 𝐾 .

No, because the hash function is one-way.

Solution: Mallory knows the two message lists and MACs:

𝑇𝐴 = 𝖧(𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛))

𝑇𝐵 = 𝖧(𝖧𝖬𝖠𝖢(𝐾,𝐵1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵𝑛))

If we try to XOR these two tags together, we would get:

𝖧(𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛)) ⊕ 𝖧(𝖧𝖬𝖠𝖢(𝐾,𝐵1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵𝑛))

Which is not the same as the tag on the combined message list:

𝖧(𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛) ⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐵𝑛))

Option (B) is incorrect because even if we hashed the XOR of the two tags, we would still not get
the correct tag on the combined message list.

In order to get from the XORed tags to the tag of the combined message, we would somehow have
to invert the hashes to recover the XOR of the HMACs, 𝖧𝖬𝖠𝖢(𝐾,𝐴1) ⊕ …⊕ 𝖧𝖬𝖠𝖢(𝐾,𝐴𝑛),
but this is not possible because the hash function is one-way.

Option (C) is false because Mallory can compute the hash without knowing 𝐾 .

Exam Prep 5 (Question 2 continues…) Page 8 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

For the rest of the question, consider this scheme for computing a single MAC on a list of 𝑛 messages
𝑀1,𝑀2,…,𝑀𝑛. For the rest of the question, you may assume each message is exactly one block long.

𝑀1

⨁

AES EncryptionK

IV

𝑀1

⨁

AES EncryptionK

…

𝑀1

⨁

AES Encryption

MAC Output

K

𝑇 = 𝐸𝐾(𝑀𝑛 ⊕𝐸𝐾(…𝑀2 ⊕𝐸𝐾(𝑀1 ⊕ IV)))

The final MAC output is (𝑇 , IV).

Q2.7 (2 points) Select all true statements about the scheme above.

Given the list [𝑀1,…,𝑀𝑛] and its MAC, it is possible to compute the MAC of list
[𝑀1,…,𝑀𝑛,𝑀{𝑛+1}] without knowing 𝐾 .

The MAC of list [𝑀1,𝑀2,𝑀3] is equal to the MAC of list [𝑀3,𝑀2,𝑀1].

None of the above.

Solution: Option (A) is false. If we want to compute the MAC of the list with an extra message,
we need to compute an AES encryption 𝐸𝐾 , but we can’t do that unless we know 𝐾 .

Option (B) is false. Each AES encryption scrambles the input unpredictably, so the order that we
chain the inputs into the AES encryption blocks affects the final output value.

Q2.8 (2 points) Suppose that you know the MAC of list [𝑀1,𝑀2,𝑀3] and the MAC of list [𝑀4,𝑀5,𝑀6].
You want to compute the MAC of the merged list [𝑀1,𝑀2,…,𝑀6]. Select all true statements below.

If you know the individual messages 𝑀1,𝑀2,…,𝑀6, you can compute the merged MAC
without knowing 𝐾 .

If you know 𝐾 , you can compute the merged MAC without knowing the individual messages.

None of the above.

Solution: In order to chain the messages together, we would need to perform additional compu-
tation to account for the fact that the two individual MACs have two different IVs, which requires
knowing both 𝐾 and the individual messages.

Exam Prep 5 (Question 2 continues…) Page 9 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.9 (2 points) You receive the MAC (𝑇 , IV) of the message list [𝑀1,𝑀2,𝑀3]. You want to compute a
MAC (𝑇 ′, IV) on the new message list [𝑀1,𝑀2,𝑀3,𝑀4]. Select the correct expression for 𝑇 ′.

𝑇 ′ = 𝐸𝐾(𝑇) ⊕𝑀4

𝑇 ′ = 𝐷𝐾(𝑇) ⊕𝑀4,

𝑇 ′ = 𝐸𝐾(𝑇 ⊕𝑀4)

𝑇 ′ = 𝐷𝐾(𝑇 ⊕𝑀4)

Solution: Looking at the diagram, we need to take the latest AES output, namely 𝑇 , and chain
it forward to the next message. We take the next message 𝑀4, XOR it with 𝑇 , and compute the
AES encryption on the result.

This could also be derived from the equation:

𝑇 = 𝐸𝐾(𝑀3 ⊕𝐸𝐾(𝑀2 ⊕𝐸𝐾(𝑀1 ⊕ IV)))

The expression we want is

𝐸𝐾(𝑀4 ⊕𝐸𝐾(𝑀3 ⊕𝐸𝐾(𝑀2 ⊕𝐸𝐾(𝑀1 ⊕ IV))))

We can substitute in 𝑇 to get

𝐸𝐾(𝑀4 ⊕ 𝑇)

as desired.

Exam Prep 5 Page 10 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 Bonsai (10 points)

EvanBot wants to store a file in an untrusted database that the adversary can read and modify.

Before storing the file, EvanBot computes a hash over the contents of the file and stores the hash sepa-
rately. When retrieving the file, EvanBot re-computes a hash over the file contents, and, if the computed
hash doesn’t match the stored hash, then EvanBot concludes that the file has been tampered with.

Clarification during exam: Assume that EvanBot does not know if hashes or files have been modified in
the untrusted datastore.

Q3.1 (4 points) What assumptions are needed for this scheme to guarantee integrity on the file? Select
all that apply.

An attacker cannot tamper with EvanBot’s stored hash

EvanBot has a secret key that nobody else knows

The file is at most 128 bits long

EvanBot uses a secure cryptographic hash

None of the above

Solution: In order to guarantee integrity on this file, we need two assumptions to hold.

First, the attacker shouldn’t be able to tamper with the stored hash. If they could, then the attacker
could simply replace the file with an arbitrary file of the attacker’s choice, and replace the original
stored hash with a hash over this new file. EvanBot’s check on the file would succeed.

If EvanBot had a secret key, then EvanBot could change the scheme to use a MAC using the
secret key instead of a hash. However, since this scheme uses a hash, a secret key doesn’t help
us here.

The file being 128 bits long has no relevance to this question.

Finally, the hash must be a secure cryptographic hash. A quick counterexample: if EvanBot used
a hash function that mapped every input to the hash value “1”, then the attacker could choose
an input of their choice, and the check on the hash would always succeed.

For the rest of this question, we refer to two databases: a trusted database that an adversary cannot read
or modify, and an untrusted database that an adversary can read and modify.

Assume that 𝖧 is a secure cryptographic hash function and | denotes concatenation.

EvanBot creates and stores four files, 𝐹1, 𝐹2, 𝐹3, and 𝐹4, in the untrusted database. EvanBot also computes
and stores a hash on each file’s contents in the untrusted database:

ℎ1 = 𝖧(𝐹1) ℎ2 = 𝖧(𝐹2) ℎ3 = 𝖧(𝐹3) ℎ4 = 𝖧(𝐹4)

Then, EvanBot stores ℎroot = 𝖧(ℎ1 | ℎ2 | ℎ3 | ℎ4) in the trusted database.

Exam Prep 5 (Question 3 continues…) Page 11 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.2 (3 points) If an attacker modifies 𝐹2 stored on the server, will EvanBot be able to detect the
tampering?

Yes, because EvanBot can compute ℎroot and see it doesn’t match the stored ℎroot

Yes, because EvanBot can compute ℎ2 and see it doesn’t match the stored ℎ2

No, because the hash doesn’t use a secret key

No, because the attacker can re-compute ℎ2 to be the hash of the modified file

Solution: In this scheme, we have a trusted database that an adversary cannot read or modify.
Because we have this trusted database, it’s possible to ensure integrity through the use of hashes,
despite them not being signed (like MAC’s).

Let’s walk through what happens if an attacker modifies 𝐹2. If the attacker modifies this file and
nothing else, then it’s easy for Bot to detect tampering: Bot just has to recompute a hash over 𝐹2
and realize that it doesn’t match ℎ2.

However, an attacker can also modify ℎ2 to be the hash of the malicious file, since it’s in the
untrusted database. Because of this, in order to detect tampering, Bot has to use the only thing
that the attacker doesn’t have access to: ℎroot, which is stored in the trusted database.

Based on this information: the simplest way to verify the integrity of 𝐹2 is to:

• Recompute a hash over 𝐹1, 𝐹2, 𝐹3, and 𝐹4.
• Recompute ℎroot using these hashes.
• Compare this ℎroot to the stored version of ℎroot.

If the attacker modifies 𝐹2, then Bot will always be able to detect the tampering, since the check
on the root hashes will fail.

Q3.3 (3 points) What is the minimum number of hashes EvanBot needs to compute to verify the integrity
of all four files?

1

2

3

4

5

More than 5

Solution: Because the attacker has the ability to modify all files and hashes in the insecure
database, Bot needs to make sure that the attacker hasn’t modified any single file/hash pair. To
do this, Bot need to follow the procedure discussed in Q3.2′s solution - recompute a hash over
each file (4 hashes in total), and recompute the root hash (1 hash in total).

Exam Prep 5 Page 12 of 12 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.

	The Red Hood
	Integrity and Authenticity: Mix-and-MAC
	Bonsai

